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THE PRODUCTION OF ATCMIC CXYGEN BY THE
THERMAL, DECOMPOSITION OF OZONE

ABSTRACT

To gtudy the reactions of atomic oxygen it is desirable to have
a supply that is free of metastable energetic species of molecular and
atomic oxygen which are formed in discharged oxygen and because of
thelr side reactions can lead to serious errors in calculations. There-
fore, the homogeneous, thermal, gas phase decompogition of dry ozone was
tried and found to be a satisfactory source if the residence time of
ozone in the furnace ig carefully regulated by furnace length and
carrier gas flow, followed by rapid cooling of the products of

decompogition.
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THWIRODUCTION

During the past several years many studies of chemical

1,2,3% h,5,6

and recombination rates of atomic oxygen have

reactions
been made in this laboratory for a better understanding and prediction
of the reactions occurring in the upper atmosphere with fegard to

1)- re—entry problems, 2) blackout, and 3) other military applications.
Throughout most of this work atomic oxygen was produced in an
electrodeless discharge‘excited by microwave radiation at 2450 Mc/sec,
generated by a Magnetron (Raytheon type GQK-390) operated at input
powers up to 800 watts. Although this has been the universally
accepted manner of producing atcomic species of gases by many workers

the O-atom production in extremely pure O, is quite lOW'(.l to .2% of

2
total O2 flow through the discharge) and recent workuﬁ’8 has shown

that metastable energetic species of O, are also generated in the

2
discharge such as Oeflzg, lAg, 32@]. Under these conditions, then,
erroneocus resuits are obtained if the presence of these specleg is

not taken intc account.

One source should clearly be the homogeneous, thermal gas phase

9

decomposition of czone”,

O, +M=04+0_ +M, AH = +24.6 kecal (1)

3 2

whereby a mole of atomic oxygen could be obtained for each mole of
ozone decomposed. Ozone is easily produced, easlily stored, and

decomposes at a comparatively low temperature.

This report is a continuation and improvement on & method first

used in WorklJr published earlier.

*
Superseript numbers denote references which may be found on page 25.

9



THE EXPERIMENT

The ozone was prepared from thorcoughly dried cylinder O2

(Southern) by first passing the O, at one atmosphere through a gquartz

2
tube, L cm in diameter, 30 cm long, packed with guartz chips, and
heated to llOOOC, then through a column 9C cm long packed with zeclite
molecular sieve, type 5A, to assure the removal of hydrogenous

impurities.

The purified 02, still at atmospheric pressure, then flowed
through the annular space of a Siemens-type czonizer across which an
ac voltage of 10-12 kv produced 0.4 - 3% ozone. The resulting mixture
of ozone and oxygen then flowed into a trap containing 600 grams of
silica gel (Davison, 6-12 mesh) which was cooled to -78°C, and upon
which the o3 was adsorbed to a density of loading of 5-8%, which
represents 30 toc 48 grams of ozone. At this temperature the C

3

partial pressure over gilica gel is 3 torrlo. Higher C_, pressures are

3

obtained by raising the silica gel temperature above ~78%. Passing

a carrier gas over the gel for C, elution one obtains a constant flow

of O3 plus carrier gas until the3density of loading drops off.

A major reguirement was a means of measuring the concentration of
the O3 before and after its decomposition by thermal means. This
analysis system (Fig. I) consists of a Pyrex glass tube 115 cm long,
equipped with a gquartz window at each end. and connected to a vacuum
pump. Light emitted from a mercury lamp (Spectroline Quartz Pencil
Lamp) placed at one end of the tube was collimated by a suitable guartz
lens, passed through light filters to isolate the 2537 2 line as
described by Kashall and hence through the 115 c¢m path length to a
quartz condensing lens and a 1P28 photomultiplier tube. The output of
the photomultiplier was amplified and displayed on a Leeds and Northrup
recorder. In a later system, the filters were replaced by a small
grating monochromator (Farrand, No. 103420). The minimum analyzable O3

pressure was about ©.5 - 1 x 10" ' torr.

10



FIGURE I. DIAGRAM OF APPARATUS
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The [0] was determined at the downstream end of the decomposition

furnace by the "gas titration” methodlg’13 using nitrogen dioxide.

Not knowing what resgidence times in the decompeosition furnace
would be most advantageous to produce a maximum concentration of atomic

oxygen by the complete decomposition of 0., the decision to give the O

3?
ample time for decomposition was adhered to. For the first attempt a

3

maiffle furnace (Figure ITa) with a heating section large enough to
- accomncdate a2 guartz reaction tube 30 om long, 2.5 ¢m internal diameter
was used. Two Jjets of compressed air were placed at the downstream end
of the reaction tube to cool the resultant gas mixture. The furnace was
fitted with a pletinum, platinum-rhodium thermocouple for temperature
measurement. The furnace and its accompanying guartz tube were connected
to the O, analysis system and a by-pass was installed around the furnace

3

to allow a measurement of [0_] before and after decomposifion.

3

To obtain shorter residence times in the heated section for O3
decomposition, two smaller furnaces, each of % inch length were
constructed. Alundum tubing, 1i inch ID, was first wound with a layer
of ashestos, then with coiled "Nichrome" heating wire with asbestos cord
spacers to prevent the individual coils from shorting out, and finally
coated with cement (Johns-Manville Refractory Cement, No. 20). Each
furnace had a resistance of 14 olms. The two sections were then
mounted in series on a piece of quartz tubing 25 c¢m long and 2.5 cm OD
with approximately 1 cm spacing between them. Thermocouples were
placed between the inner wall of the furnace and the outer wall of the
quartz tube. The downstream end of the tubing was again cooled by air
jets, and the whole assembly (Figure IIb) fitted into the space
previously filled by the original furnace.

As will be noted in the discussion, still shorter residence times
were advisable; therefore, two more furnaces each of 2 inch length
were constructed in the same manner as the 4 inch furnaces and mounted
in series on a piece of 1 inch OD quartz tubing (Fig.IIc)for emplace-

ment in the same position within the flow system. For more efficient

12



FIGURE I
DIAGRAM OF THREE TYPES OF FURNACES
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cooling of the decomposed gas mixture a quartz water cooled condepser
was placed downstream of the heated portion as close to the final

heater as was dared, considering the extreme thermal shock to the tubing
induced by heating to lOOOOC followed by immediate cooling. It was

found that a short space of 1.25 cm was tolerable and desirable.

The procedure used during the heating period followed the same
pattern with all furnaces tried. With the furnace at room temperature
total flows of 03 with O2 as carrier gas {He in some cases for
comparison only) of 30 to 600 ML (N.T.P.)/min were allowed to flow
first through the by-pass into the evacuated O3 analysils system and
then through the furnace where the decomposition occurred while the
[03] was being monitored. Several experiments showed that, as the
temperature of the O3 decomposition furnace was raised, the [03] remained
unchanged until a temperature of 5OOOC was rcached, then decreased with
further temperature increase éo that at 75000 and above, the O3 was
completely decomposed. At most flow rates and at all pressures a small
amount of Oq (henceforth referred to as residual 03) was found to be
present even at the highest furnace temperature. This was undoubtedly

due to the recombination of O with O2 in the cool portion of the system.

1k



RESULTS AWD DISCUSSION

Followlng the experlmental proceedure described earlier using
the 12 inch long furnace, results were obtained which were guite
disappointing. The yield of atomic oxygen was extremely low
{rv 2% of the ozone input) and a very small quanbity of'residual ozone
was noted. This was puzzling when one considers the half-life of 03
ig about 1 msec at lOOOoC at a pressure of 3 torr {calculated assuming

k for the reaction to be 1.94 x 1070 cms/mole sec).

Previous studies in this laboratorylu have shown that the rate of

the heterogencous O-atom recombination -
0+ Wall - 1L/ 0, + Wall (2)

on hot vycor walls is fast, and increases with increasing temperature.
At 109001{J for example, the rate constant is 21.3 sec-l. This can
explain, in part, the low [o]. cConsidering the length of this furnace,
which allowed residence times of 10-80 msec depending on the flow rate
of carrier gas, there was ample time for thls undesirable reaction to

occur .

Another possible undesirable reaction that should be considered is

the homogeneous gas phase reaction -

0+ 0, +M~ 0, +M (3)

which would nct only lessen the anticipated [O], but would give the
residual [03] encountered. However, this’reaction could only be taking
place in the cool portion of the system downstream from the furnace
because in the heated section its equilibrium is strongly in favor of
the reverse. If the carrier gas is O2 (as was used here) then the

reacticn would have a good chance of occurring.

The next phase of the experimentation was dictated by the urgent
need to reduce the residence times in the heated zone to curtail
reaction (2). Two l=inch furnace sections were used initially; how-

ever, it was soon found that the use of only one L-inch sectlon was

15
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most advantageous, because a higher [0] was obtained than with the
operation of the two in series. As shown in Table II, with operation
of one furnace section at slightly over lOOOOC, and at total flow rates
of 30 mL{N.T.P)/min the percentage of atomic oxygen obtained is equal
to 24.L% of the total ozone input, in comparison with 15.4% obtained
with the operation of both furnaces at similar flow conditiocns

(Table I). Tt can also be noted that increasing the flow rates of
oxygen a8 the carrier 1) increased the atomic oxygen concentration,
though the apparent percentage of ozone decomposed fell off; and 2)

increased the residual 0. [due to reaction (3) in the cool section].

3

" To prove that reaction (3) was occurring, helium was substituted
for O2 as carrier gas. The rates of chemical reactionsg are strongly
dependent upon the concentrations of the reactants, and in this case,
complete removal of one of the reactants should prevent the reaction.

However, reaction (2) is constantly supplying O,, although the [02]

s
derived from this reaction is very low in compaiison to the EOEJ when
using O2 as carrier. As had been expected, the (0] under similar
conditicns of total flow rate did increase (Table II) and resulted in
a higher percentage of atomic oxygen. Likewise, the residual ozone
concentration remained at a much lower level. One would not expect
reaction (2) to be changed, as at the temperatures of the furnace no

reaction occurs between O2 and O.

It should be mentioned here that the apparent lack of conformity
of the resgidual [03] noted in Table IT can only be ascribed to
experimental technique, and is not alarming when one considers the

extremely small quantities of ozone in guestion.

The pair of 2-inch long furnaces was next installed and an
increase of percentage of 0 was immedistely noted over the former
experimental set-ups and again the greatest increase was found while
operating a single furnace section {Tables IIT and IV). An assumption
had been made here that perhaps at the highest Tlow rates of carrier

(shortest residence times) the O. decomposition would not have had

3
17
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total,
torr
0.k9
0.91
1.41

2.52

TABLE T

Two L-Inch Furnace Sections Operating. T = 1015°C

O elution of C

2 3
Fcarrier, O2 FO 03 input residual O3 x 100 x 100
ml /min ml /min  p, mborr D, mtorr input
30 0.188 19.8 0.0 15.L4
80 0.310 30.3 0.0 11.6
200 0.kgz 31.7 0.0 7.7
535 1.17 78.7 0.0 7.0
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TABLE IT

One b-Inch Furnace Section Operating, T = 101500

0, elution of O,

Piotal, Fearrier, 0, o O3 input residual Oy fé___ x 100 0  x 100
torr ml fmin ml /min p, mtorr p, mtorr O3 input FO2
0.555 30 0.16k4 12.4 0 2h.3 0.5
0.80 8o 0.286 17.7 0.2 16.1 0.3
1.35 200 0.638 27.4 0.0 15.7 0.3
2.15 415 1.474 49.6 0.3 15.4 0.3
2.88 €5 2.0 73.9 1.0 11.9 0.3

He elution of 0,
0.610 31 0.225 15.4 0.1 28.6
0.93 8o 0.4k21 2k.1 0.0 20.2
1.63 200 1.034 hs5.1 0.0 18.6
1.86 300 1.490 52.1 0.0 17.7
2.19 415 2.216 €9.1 0.0 16.1



TABLE IIT
Two 2-Inch Furnace Sections Operating, T = lOlBOC

0, elution of O

0¢

2 3
Piotal, Tearrier, o, o O3 jnput Tesidual Og ?o X 100 o + 100
torr ml /min ml /min D, mtorr D, mtorr ﬁg‘iﬁiﬁﬁ?"' i?;:""‘
555 30 164 12.4 0.0 el .l 0.5
.80 80 .286 17.7 2 16.6 0.3
1.35 200 .638 27.4 .0 15.7 0.3
2.15 L1s 1.474 49.6 .3 15.4 0.3
2.88 665 2.0hk1 73.9 1.0 11.9 0.3
He elution of O3
Fcarrier, He
ml /min
605 32 .220 15.4 .1 27.0
.90 78 NN 23.9 b.o 20.0
1.59 200 1.068 Lh.8 1 18.9
1.82 300 1.676 50.2 0.0 20.3

2.18 415 2.116 67.1 1 16.5



TS

total
torr

0.70

1.355

1.625

1.820°

2.200

TABLE IV

One 2-Inch Furnace Section Operating, T = lOlSOC

O2 elution of O3
¥earrier, 0 o O3 jpput ~ Tesidual Og o
ml /min ml /min  p, mtorr D, mtorr O3 inputX'lOO 0, * 100
30 0.267 17.3 0.3 36.0 .8
80 o.ueh 20.9 0.7 23.5 .5
200 0.905 37.5 0.6 16.4 L
415 1.899 68.6 0.8 14.5 o
665 2.320 96.4 1.7 10.6 .3
He elution of O3
Fcarrier, He
ml /min
32 0.l15 18.6 0.8 60.6
78 0.672 26.8 0.4 38.0
200 1.575 52.6 0.4 24.3
300 2.258 57.1 0.1 24.0
415 3.150 75.0 0.1 22.3



time to go to completion. This was not the case and indicates that
still shorter residence times would increase the O-atom yield. TUpon
substitution of He for O2 as carrier, the expected higher percentage
of O based on the O3 input was obtained (hence added proof of the
occurrence of reaction (3)). However, note that residual_O3 in Table

IV with He elution is highest at the lowest pressure and decreases

with increasing pressure indicating that O, decomposition may not have

3

been complete at lower pressures.

SUMMARY

These findings show that the thermal, homogeneous, gas phase
decompogition of ozone is a sultable source of atomic oxygen. Figure
IV presents a plotted comparison between the oxygen atom concentration
obtained by the carefully controlled decomposition of ozone and by a
microwave discharge in extremely pure, dry oxygen. During the heating
or decompositicn period, the choice of either O2 or He as the carrier
is not important, and the major problem to be dealt with is the fast
recombination of O on the hot wall. In the cool portion of the system,
the major losses of O occur by the slow reaction of O with 02.

Therefore, the hot wall recombination of O becomes the limiting factor.

The method does carry certain limitations. 1) a high concentration
of O3 can be obtained from the trap only while the density of lcading
stays constant (throughout the first half of the total elution).

During a long run (a few hours) one would begin to notice a gradusl
decrease in L0]. However, this can be controlled by anticipating the
gquantity required beforehand and constructing a sultably large trap.
2) The residual [03] might be undesirable in some applications, as

well as the presence of O, cor N2 as used in this work for carrier gas.

2
A further study is being considered, that is, the thermal

decompogition of O by means of a heated filament placed as near as

3

possible to the location within the system where the atomic oxygen is

to be used to prevent the occurrence of reaction (4), and to keep the

22
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vycor walls in the viecinity of the filament suitably cooled to prevent
the occurrence of reaction {(3). One such attempt was actually made
using a platinum wire (.02 inch diam.) filament. Upon being heated to
a bright red heat the filaﬁent collapsed and was immediately unfit for
further use. Perhaps the use of a rhodium filament would prevent this
difficulty. However, great care should be taken to promote an
extremely short contact time with the filament (for decomposition of
03) as the hot metal surfaces are excellent for the recombination of

O-atoms.
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